Thursday, August 14, 2014

Sinar X

Sinar X

A.Definisi sinar X

Sinar-X atau sinar Röntgen adalah salah satu bentuk dari radiasi elektromagnetik dengan panjang gelombang berkisar antara 10 nanometer ke 100 pikometer (sama dengan frekuensi dalam rentang 30 petahertz - 30 exahertz) dan memiliki energi dalam rentang 100 eV - 100 Kev. Sinar-X umumnya digunakan dalam diagnosis gambar medis dan Kristalografi sinar-X. Sinar-X adalah bentuk dari radiasi ion dan dapat berbahaya.

Pesawat Sinar-X medis (foto Radiologi konvensional) memiliki prinsip penembusan gelombang elektromagnetik dari sumber cahaya ke tubuh manusia, lalu menembus hingga mencapai pelat film untuk menghasilkan gambar berupa citra tubuh manusia
Dikenal beberapa posisi dalam foto radiologi kedokteran:
1. PA (Postero-Anterior) Sumber cahaya berada di belakang pasien, dan pelat film berada di bagian depan pasien. Posisi ini yang paling umum digunakan terutama untuk foto roentgen thorax (dada)
2. AP (Antero-Posterior) Sumber cahaya berada di depan pasien, dan pelat film berada di bagian belakang pasien. Biasanya digunakan pada pasien yang tidk mampu berdiri untuk mengambil posisi PA karena sakit yang dideritanya.
3. Lateral (Samping)
4. Lateral dekubitus
5. Oblik (miring)
B.Sejarah Sinar X
Sinar –x adalah gelombang elektromagnetik yang mempunyai panjang gelombang 10-8 -10-12 m dan frekuensi sekitar 1016 -1021 Hz.sinar ini dpat menembus benda-benda lunak seperti daging dan kulit tetapi tidak dapat menembus benda-benda keras seperti tulang,gigi,dan logam.Sinar x sering di gunakan di berbagai bidang seperti bidang kedokteran,fisika,kimia,mineralogy,metarulugi,dan biologi.
Sinar x di temukan secara tidak sengaja oleh Wilhelm Conrad Rontgen (1845-1923).Ilmuwan Jerman pada November 1895.Pada waktu itu,Rontgen sedang mempelajari pancaran electron dari tabung katode.Lempeng logam yang letaknya di dekat tbung katode memencarkan sinar flueresens selama electron di alirkan.Oleh sebab itu,Rontgen menyimpulkan bahwa sinar tersebut di sebabkan oleh radiasi dari suatu atom.karena tidak di kenal dalm ilmu,maka Rontgen memberikan nama dengan sebutan SINAR X.
Minat yang besar untuk mendalami penelitian sinar katoda mendorong Roentgen mempersiapkan fasilitas untuk penelitian tersebut. Dalam suatu laboratorium yang luas, Roentgen memasang sebuah kumparan Ruhmkorff yang dilengkapi interuptor sehingga dapat membangkitkan bunga api listrik sepanjang 10-15 cm. Roentgen juga melengkapi peralatannya dengan tabung Hittorf-Crookes (tabung pelucutan), beberapa tabung Lenard, dan sebuah tabung yang baru diterima dari Muller-Unkel. Peralatan lain berupa pompa vakum Rap untuk menghampakan tabung-tabung tersebut.
Sinar-X diamati pertama kali oleh Roentgen pada 8 Nopember 1895, pada saat ia sedang bekerja dengan tabung Crookes di laboratoriumnya di Universitas Wurzburg. Dia mengamati nyala hijau pada tabung yang sebelumnya menarik perhatian Crookes. Roentgen selanjutnya mencoba menutup tabung itu dengan kertas hitam agar tidak ada cahaya tampak yang dapat lewat. Namun, ternyata masih sinar tidak tampak yang lewat.
Saat Roentgen menyalakan sumber listrik tabung untuk penelitian sinar katoda, ia mendapatkan ada sejenis cahaya berpendar pada layar yang terbuat dari barium platinosianida. Jika sumber listrik dipadamkan maka cahaya pendar pun hilang. Roentgen segera menyadari bahwa sejenis sinar yang tidak kelihatan telah muncul dari dalam tabung sinar katoda. Karena sebelumnya tidak pernah dikenal maka sinar ini diberi nama sinar-X. Untuk menghargai jasanya, sinar itu dinamakan juga sinar Roentgen.
Nyala hijau yang terlihat oleh Crookes dan Roentgen ternyata merupakan gelombang cahaya yang dipancarkan oleh dinding kaca tabung sewaktu elektron menabrak dinding itu. Pada saat yang bersamaan, elektron itu merangsang atom pada kaca untuk mengeluarkan gelombang elektromagnetik yang panjang gelombangnya sangat pendek, dalam bentuk sinar-X. Sejak saat itu, para ahli fisika mengetahui bahwa sinar-X dapat dihasilkan bila elektron dengan kecepatan yang sangat tinggi menabrak atom.
Tergiur oleh penemuannya yang tidak sengaja itu, Roentgen menyisihkan penyelidikan-penyelidikan lain dan memusatkan perhatiannya pada penyelidikan sinar-X. Dalam mempelajari sinar yang baru ditemukannya itu, Roentgen mendapatkan bahwa jika bahan yang tidak tembus oleh cahaya ditempatkan di antara tabung dan layar pendar, maka intensitas perpendaran pada layar itu berkurang, namun tidak hilang sama sekali. Hal ini menunjukkan bahwa sinar itu dapat menerobos bahan yang tidak tembus oleh cahaya biasa (cahaya tampak). Di samping itu, Roentgen juga bisa melihat bayangan tulang tangannya pada layar yang berpendar dengan cara menempatkan tangannya di antara tabung sinar katoda dan layar. Ia juga menemukan sinar-X dapat memendarkan berbagai senyawa kimia lain seperti senyawa calsium, kaca uranium, kalsit, serta batu garam. Hal lain yang dibuktikannya adalah sinar-X bukan partikel bermuatan karena berjalan melintasi garis lurus, tidak dibelokkan oleh medan listrik maupun medan magnet.
Percobaan lainnya yang dilakukan oleh Roentgen adalah dengan meminta istrinya sendiri menjadi objek percobaan. Dengan memasang film fotografi di dalam kaset dan menempatkan tangan istrinya di antara kaset dan tabung sinar katoda, pada film akhirnya tercetak ruas-ruas tulang telapak tangan Ny. Roentgen yang memakai cincin. Setelah berbagai percobaan dilakukannya, pada 28 Oktober 1895, ia menyampaikan karya tulis ilmiahnya yang pertama tentang penemuan sinar-X itu pada perkumpulan fisika kedokteran di Wurzburg.
Karya tulis ilmiah yang kedua tentang penemuan sinar-X diserahkan kepada Komisi Redaksi Perkumpulan Fisika Kedokteran pada 9 Maret 1896. Sebelumnya, pada 3 Maret 1896, Universitas Wurzburg mengangkatnya menjadi doktor kehormatan dalam ilmu kedokteran, meskipun pada waktu itu belum banyak orang yang menaruh harapan terhadap aplikasi praktis sinar-X dalam bidang kedokteran. Pada Nopember 1896, Roentgen mempresentasikan hasil penemuannya itu di depan perkumpulan fisika kedokteran Universitas Wurzburg.
Tanggapan terhadap penemuan sinar-X datang dari berbagai penjuru dunia. Dalam peringatan hari ulang tahun Univeristas Berlin yang ke-50 dipamerkan hasil penemuan Roentgen. Berbagai penghargaan internasional juga diterima oleh Roentgen, seperti Rumford Medal dari Royal Society di London pada 1896, medali dari Franklin Institute di Philadelphia dan medali dari kerajaan Italia. Penghargaan juga datang dari Kaisar Wilhelm II yang pada saat itu memerintah Jerman. Undangan untuk memamerkan hasil penemuannya itu datang pada 13 Januari 1896. Pada kesempatan itu, Roentgen dianugerahi Bintang Orde Mahkota Prusia Kelas II. Pengakuan internasional ditandai dengan dianugerahkannya hadiah Nobel bidang fisika pada 1901 (enam tahun setelah penemuan) kepada W.C. Roentgen. Ini merupakan hadiah Nobel yang pertama kali diberikan dalam bidang fisika.
C.Pesawat Sinar-X
Pesawat sinar-X adalah pesawat yang dipakai untuk memproduksi sinar-X. Pesawat ini terdiri atas tabung sinar-X dan variasi rangkaian elektronik yang saling terpisah. Sinar-X dibangkitkan dengan jalan menembaki target logam dengan elektron cepat dalam suatu tabung vakum. Elektron sebagai proyektil dihasilkan dari pemanasan filamen yang juga berfungsi sebagai katoda. Filamen ini dipasang pada bidang cekung untuk memfokuskan elektron menuju daerah sempit pada target (anoda).
Pada saat arus listrik dari sumber tegangan tinggi dihidupkan, filamen katoda akan mengalami pemanasan sehingga kelihatan berwarna putih. Dalam kondisi ini, katoda akan memancarkan elektron (sinar katoda). Elektron selanjutnya ditarik dan dipercepat gerakannya hingga mencapai ribuan km/s melalui ruang hampa menggunakan tegangan listrik berorde 102 – 106 Volt. Elektron yang bergerak sangat cepat itu akhirnya ditumbukkan ke target logam bernomor atom tinggi dan bersuhu leleh juga tinggi. Ketika elektron berenergi tinggi itu menabrak target logam, maka sinar-X akan terpancar dari permukaan logam tersebut.
Roentgen telah merencanakan untuk melanjutkan penelitiannya mengenai sinar-X dengan tegangan tabung yang lebih tinggi. Banyak kendala dihadapi Roentgen, misalnya tabung sinar-X bocor setelah tegangannya mencapai nilai tertentu. Penyempurnaan tabung sinar-X mula-mula muncul dengan diperkenalkannya katoda jenis filamen yang dapat memfokuskan berkas elektron menuju target logam berat. Tabung jenis ini dapat membangkitkan sinar-X dengan gelombang lebih pendek atau energi yang lebih tinggi. Namun, operasi tabung jenis baru itu tidak menentu karena sinar-X yang dibangkitkannya sangat bergantung pada tekanan gas di dalam tabung.
Penyempurnaan berikutnya dilakukan pada 1913 oleh fisikawan Amerika William David Coolidge (1873-1975). Tabung Coolidge sangat vakum dan di dalamnya terdapat filamen yang dibuat dari kawat pijar dan target. Tabung Coolidge pada prinsipnya merupakan tabung vakum termionik dengan katodanya memancarkan elektron secara langsung karena mengalami pemanasan oleh aliran listrik yang teratur. Elektron yang dipancarkan dari filamen panas dipercepat menuju ke arah anoda dengan menggunakan tegangan tinggi yang dipasang di sepanjang tabung. Karena elektron menabrak anoda dengan kuatnya, maka dari anoda itu terpancar sinar-X. Jika tegangan anoda dinaikkan, semakin tinggi pula kecepatan gerak elektron menuju anoda, sehingga energi sinar-X yang dipancarkannya juga semakin tinggi.
Meskipun efisiensi diusahakan setinggi mungkin, pada umumnya kurang dari 1% energi elektron yang dapat diubah menjadi sinar-X, sedang sisanya muncul sebagai panas. Oleh karena itu, target harus dibuat dari bahan yang memiliki titik leleh sangat tinggi dan harus mampu mengalirkan panas yang timbul. Bagian anoda pesawat sinar-X biasanya memiliki radiator bersirip di bagian luar tabung untuk membantu proses pendinginan target. Pesawat sinar-X yang dioperasikan pada tegangan sangat tinggi, anodanya memiliki lubang pendinginan untuk mengalirkan minyak atau air ke dalamnya.
Sebagian besar tabung sinar-X yang beroperasi dewasa ini menggunakan model tabung Coolidge yang dimodifikasi. Tabung yang lebih besar dan lebih kuat memiliki sistem pendingin air pada anti katodanya untuk mencegah pelelehan akibat panas yang timbul dari penembakan elektron. Bersamaan dengan berkembangnya pengoperasian pesawat sinar-X, tumbuh pula industri pesawat pembangkit sinar-X beserta peralatan, perlengkapan, dan suku cadangnya.
Untuk mendapatkan sinar-X dengan energi yang sangat tinggi, para ilmuwan telah membangun mesin pembangkit sinar-X yang sangat kuat. Salah satu di antaranya adalah mesin pembangkit yang diberi nama betatron. Sebagian besar betatron dapat menghasilkan elektron berenergi kira-kira 20 MeV sehingga dapat dipancarkan sinar-X berenergi sangat tinggi,. Mesin pembangkit sinar-X energi tinggi yang lainnya adalah jenis akselerator linier (LINAC). Alat ini dapat dipakai untuk mempercepat partikel hingga berenergi di atas 1 BeV.
D.Aplikasi Sinar-X dalam Medis
Dalam dunia medis sinar-X terutama dimanfaatkan untuk diagnosis. Dengan penemuan sinar-X ini, informasi mengenai tubuh manusia menjadi mudah diperoleh tanpa perlu melakukan pembedahan. Gambar terbentuk karena adanya perbedaan intensitas sinar-X yang mengenai permukaan film setelah terjadinya penyerapan sebagian sinar-X oleh bagian tubuh manusia. Daya serap tubuh terhadap sinar-X sangat bergantung pada kandungan unsur-unsur yang ada di dalam organ.
Perkembangan dalam bidang teknologi, terutama setelah ditemukannya beberapa jenis pemantau radiasi dan metode proses pembentukan bayangan gambar dengan komputer, memungkinkan proses pembentukan bayangan gambar pada film diubah dengan cara merekonstruksi bayangan gambar dengan komputer. Dengan teknik ini, bayangan gambar dapat diperoleh dengan segera. Kemampuan untuk membedakan antara jaringan yang satu dengan lainnya juga mengalami peningkatan. CT-scan, misalnya, mampu membedakan antara dua jaringan yang sangat mirip dalam otak manusia, yaitu antara substansia grisea dengan substansia alba.
Untuk meningkatkan kualitas gambar dalam radiodiagnostik, seringkali digunakan media kontras dengan cara memasukkan substansi yang bisa menyerap sinar-X lebih banyak ke dalam tubuh yang sedang didiagnosis. Bahan yang sering dimanfaatkan sebagai media kontras adalah Barium (Ba) dan Iodium (I).

E.Kegunaan dan Kerugian Sinar X
a.KERUGIAN SINAR X

Setelah Roentgen memperlihatkan hasil pemotretan dengan sinar-X terhadap tangan istrinya yang memakai cincin, dimana pada gambar tersebut terlihat dengan jelas ruas-ruas tulang jari tangannya, maka manusia mulai menyadari akan manfaat besar yang dapat diperoleh dari penemuan radiasi pengion tadi. 
Pemanfaatan radiasi pengion dalam bidang kedokteran, terutama sinar-X, berkembang pesat beberapa saat setelah penemuan radiasi tersebut. Penguasaan pengetahuan mengenai radiasi pengion oleh umat manusia yang terus meningkat dari waktu ke waktu juga memungkinkan dimanfaatkannya radiasi tersebut dalam berbagai bidang kegiatan di luar kedokteran, di samping pemanfaatan-nya di dalam bidang kedokteran sendiri juga terus mengalami peningkatan.

·         Beberapa efek merugikan yang muncul pada tubuh manusia karena terpapari sinar-X dan gamma : segera teramati beberapa saat setelah penemuan kedua jenis radiasi tersebut. Efek merugikan tersebut berupa kerontokan rambut dan kerusakan kulit. Pada tahun 1897 di Amerika Serikat dilaporkan adanya 69 kasus kerusakan kulit yang disebabkan oleh sinar-X, sedang pada tahun 1902 angka yang dilaporkan meningkat menjadi 170 kasus. Pada tahun 1911 di Jerman juga dilaporkan adanya 94 kasus tumor yang disebabkan oleh sinar-X. Meskipun beberapa efek merugikan dari sinar-X dan gamma telah teramati, namun upaya perlindungan terhadap bahaya penyinaran sinar-X dan gamma belum terfikirkan. Marie Curie, penemu bahan radioaktif Po dan Ra meninggal pada tahun 1934 akibat terserang oleh leukemia. Penyakit tersebut besar kemungkinan akibat paparan radiasi karena seringnya beliau berhubungan dengan bahan-bahan radioaktif.

b.KEGUNAAN SINAR X

·         Pengobatan
• Sinar-X lembut digunakan untuk mengambil gambar foto yang dikenal sebagai radiograf. Sinar-X bisa menembus tubuh manusia tetapi diserap oleh bagian yang lebih padat seperti tulang. Gambar foto sinar-X digunakan untuk memperlihatkan kecacatan tulang, mengdeteksi tulang yang patah dan memperlihatkan keadaan organ-organ dalam tubuh.
• Sinar-X keras digunakan untuk memusnahkan sel-sel kanker. Cara ini dikenal sebagai radioterapi.

·         Perindustrian
Dalam bidang perindustrian, sinar-X digunakan untuk :
• mengetahui kecacatan dalam struktur binaan atau bagian-bagian dalam mesin dan engine.
• memperbaiki rekahan dalam pipa logam, dinding konkrit dan tekanan tinggi.
• memeriksa retakan dalam struktur plastik dan getah.

·         Penyelidikan
• Sinar-X digunakan untuk menyelidik struktur hablur dan jarak pemisahan antara atom-atom dalam suatu bahan hablur.

c.EFEK PENGUNAAN Sinar-X

Walaupun sinar-X sangat berguna kepada manusia, tetapi pennggunaan secara berlebihan kepada sinar-X mungkin menyebabkan : 
• pemusnahan sel-sel dalam tubuh.
• perubahan struktur genetik suatu sel.
• penyakit kanser barah.
• kesan-kesan buruk seperti rambut rontok, kulit menjadi merah dan berbisul. 

Sinar Ultraviolet



 Sinar Ultraviolet

A.Definisi

     Sinar ultra violet (UV) diketahui merupakan salah satu sinar dengan daya radiasi yang dapat bersifat letal bagi mikroorganisme. Sinar UV mempunyai panjang gelombang mulai 4 nm hingga 400 nm dengan efisiensi tertinggi untuk pengendalian mikroorganisme adalah pada 365 nm. Karena mempunyai efek letal terhadal sel-sel mikroorganisme, maka radiasi UV sering digunakan di tempat-tempat yang menuntut kondisi aseptik seperti laboratorium, ruang operasi rumah sakit dan ruang produksi industri makanan dan minuman, serta farmasi.
Salah satu sifat sinar ultra violet adalah daya penetrasi yang sangat rendah. Selapis kaca tipis pun sudah mampu menahan sebagian besar sinar UV. Oleh karena itu, sinar UV hanya dapat efektif untuk mengendalikan mikroorganisme pada permukaan yang terpapar langsung oleh sinar UV, atau mikroba berada di dekat permukaan medium yang transparan. Absorbsi maksimal sinar UV di dalam sel terjadi pada asam nukleat, maka diperkirakan mekanisme utama perusakan sel oleh sinar UV pada ribosom, sehingga mengakibatkan terjadinya mutasi atau kematian sel (Atlas, 1997).
Mutasi adalah suatu perubahan pada rangkaian nukleotida dari suatu asam nukleat. Mutasi dapat berakibat pada kesalahan menyandi protein dan keadaan ini jika tidak bersifat letal, biasanya menimbulkan penampakan fenotip yang berbeda dari keadaan normalnya. Karena merupakan perubahan pada materi genetik, maka mutasi diwariskan pada keturunannya.
    Trichoderma harzianum adalah jenis kapang yang tersebar luas di tanah, dan mempunyai sifat mikoparasitik. Mikroparasitik adalah kemampuan untuk menjadi parasit bagi kapang lain. Sifat inilah yang dimanfaatkan sebagai agen biokontrol terhadap jenis-jenis kapang fitopatogen. Beberapa kapang fitopatogen penting yang dapat dikendalikan oleh Trichoderma antara lain: Rhizoctonia solani, Fusarium sp., Lentinus lepidus, Phytium sp., Botrytis cinerea, Gloeosporium gloeosporoides, Rigidoporus lignosus dan Sclerotium rolfsii yang menyerang tanaman jagung, kedele, kentang, tomat dan kacang buncis, kubis, cucumber, kapas, kacang tanah, pohon buah-buahan, semak dan tanaman hias. Kemampuan mikoparasitik tersebut dimungkinkan karena T. harzianum mampu menghasilkan enzim-enzim yang mampu melisiskan dinding sel kapang lain, seperti enzim kitinase dan b-glukanase. Kitin dan glukan merupakan penyusun utama dinding sel kapang. Adanya enzim kitinase dan glukanase yang dihasilkan oleh T. harzianum akan menghidrolisis kitin dan glukan yang menyusun dinding sel kapang, sehingga hifa kapang mengalami lisis.
Pemaparan sinar ultraviolet selama 1, 2 dan 3 jam tidak berpengaruh terhadap pertumbuhan T. harzianum maupun kemampuan mikoparasitiknya terhadap kapang patogenik tanaman F. oxysporum.

B.Pengertian Sinar Ultraviolet

Sinar Ultraviolet (UV) adalah sinar tidak tampak yang merupakan bagian energi yang berasal dari matahari. Sinar UV dapat membakar mata, rambut, dan kulit jika bagian tubuh tidak dilindungi, atau jika mereka terlalu banyak terkena sinar matahari. Meskipun demikian, sinar UV sangat berguna dalam ekosistem kita.
Sinar UV membantu tubuh kita dalam membuat vitamin D, yang memperkuat tulang dan gigi dan membantu tubuh kita membangun kekebalan terhadap penyakit seperti rakhitis dan kanker usus besar. Sinar UV juga digunakan untuk mengobati psoriasis, sinar memperlambat pertumbuhan sel-sel kulit. Sinar UV telah digunakan dalam berbagai hal komersial juga, termasuk sterilisasi dan desinfeksi. Beberapa hewan dapat melihat sinar UV, dan UV membantu lebah untuk mengumpulkan serbuk sari dari bunga.


C.Manfaat Sinar Ultraviolet

Sering kali kita hanya mengerti bahwa sinar matahari mengandung ultraviolet yang berbahaya bagi tubuh dan sebaliknya hanya penting bagi pembentukan vitamin D bagi tubuh. Faktanya adalah pembentukan vitamin D mutlak memerlukan sinar ultraviolet. Apa saja manfaat sinar matahari bagi tubuh kita, berikut ulasannya :

1.     Sumber utama vitamin D. Sinar ultraviolet ternyata membantu mengubah kolesterol yang tersimpan di kulit menjadi vitamin D. Hanya dengan berjemur selama 5 menit di pagi hari, tubuh kita mendapatkan 400 unit vitamin D.
2.    Mengurangi kolesterol darah. Proses pembentukan vitamin D di mana mengubah kolesterol di dalam darah maka akan mengurangi kadar kolesterol dalam tubuh kita.
3.    Penawar infeksi dan pembunuh bakteri. Sinar ultraviolet ternyata juga membantu membasmi virus-virus penyebab kanker. Secara umum, sinar matahari mampu membunuh bakteri, virus, dan jamur yang berpotensi menyebabkan TBC, peritonitis, pneumonia, dan asma saluran pernapasan.
4.    Mengurangi gula darah. Sinar matahari membantu penyerapan glukosa ke dalam sel-sel tubuh yang merangsang glukosa menjadi glikogen sehingga secara langsung berperan menurunkan kadar gula darah dalam tubuh kita.
5.    Meningkatkan kebugaran pernafasan. Penambahan glikogen di otot dan hati melalui sinar matahari ternyata meningkatkan perbaikan sistem pernafasan karena meningkatkan kemampuan darah dalam menyalurkan oksigen keseluruh jaringan tubuh.
6.    Membantu membentuk dan memperbaiki tulang. Vitamin D yang dibentuk melalui sinar matahari berfungsi meningkatkan penyerapan kalsium oleh tubuh sehingga memperbaiki komponen tulang dan mencegah penyakit rakhitis,osteoporosis, dan osteomalacia.
7.    Meningkatkan kekebalan tubuh. Sinar matahari mampu meningkatkan antibodi dalam tubuh dengan membentuk sel darah putih untuk melawan substansi asing yang merugikan di dalam tubuh. Membaiknya sistem pernafasan melalui sinar matahari juga berperan dalam membasmi kuman-kuman secara lebih cepat. Selain itu, sinar matahari juga mampu menurunkan potensi terjangkit flu hingga 30-40 persen.


D.BAHAYA SINAR ULTRAVIOLET PADA TUBUH MANUSIA

●BAHAYA SINAR UV PADA KULIT

Pada dasarnya, kulit manusia dilengkapi dengan perlindungan alami dari sinar matahari yaitu pigmen melanin. Kulit yang gelap menandakan kandungan pigmen dalam jumlah banyak, begitu juga sebaliknya. Penelitian membuktikan bahwa semakin banyak pigmen, semakin kecil kemungkinan seseorang terkena kanker kulit karena pigmen berfungsi sebagai penangkal dampak sinar UV yang dipancarkan matahari. Sering beraktivitas di bawah sinar matahari tanpa pelindung kulit, akan menyebabkan kulit lebih cepat mengalami penuaan. Kulit jadi cepat berkerut dan timbul bercak-bercak hitam yang kita kenal sebagai flek hitam. Sinar UV juga bisa membuat kulit tidak mulus karena menebal atau menipis. Bisa juga muncul benjolan-benjolan kecil yang ukurannya bervariasi. Benjolan-benjolan atau flek padakulit bisa berkembang menjadi tumor jinak bahkan kanker kulit. Khususnya pada orang yang banyak bekerja di bawah terik matahari atau sering berjemur di pantai. Tidak heran bila bintik awal kanker kulit timbul di bagian tubuh yang terbuka seperti wajah, kepala, tangan dan bagian yang banyak terpapar sinar matahari.Sinar Matahari tidak sepanjang hari merusak kulit, sebelum pukul 09.00 pagi justru penting untuk tulang. Kita justru harus waspada pada pancaran sinar yang berlansung sejak pukul 09.00 hingga 15.00, sebab disaat waktu tersebut sinar matahari mengandung sinar UVyang dapat merusak kulit.

BAHAYA SINAR UV PADA MATA
Radiasi sinar UV pada mata akan menyebabkan terjadinya reaksi oksidasi pada lensa mata yang akan menimbulkan kekeruhan pada lensa sehingga timbullah penyakit yang disebutkatarak, juga kerusakan pada kornea dan retina.

E.TIPS MELINDUNGI TUBUH DARI SINAR UV

Berikut beberapa tips untuk perlindungan dari sinar UV :

Penggunaan sun protektor atau tabir surya dapat membantu untuk menghindari cahaya berbahaya sebelum menembus ke kulit. Penggunaan tabir surya sebaiknya disesuaikan pada jenis kulit dan seberapa sering kita berhadapan langsung dengan matahari. SPF (Sun Protection Factor), satuan tabir surya lazim digunakan untuk menunjukkan berapalama kita bisa terpapar sinar matahari tanpa kulit jadi terbakar, tersedia dari kadar 8, 15, 30,45, atau bahkan 60. Penghitungan SPF disesuaikan dengan dosis minimal timbulnya eritema atau kemerahan. Kalau selama ini kita menggunakan kacamata hitam untuk mencegah timbulnya kerutan di sudut mata dan pelengkap fashion, kini bertambah lagi alasan mengapa kita wajib membawa benda yang satu itu.

Sebuah penelitian menunjukkan bahwa penggunaan kaca mata hitam atau sunglasses bermanfaat bagi kesehatan mata antara lain membantu mengurangi cahaya menyilaukan yang masuk ke mata, melindungi mata dari bahaya sinar ultraviolet, serta mengurangi kontras.


F.Cara Menghindari Pengaruh Buruk Sinar Ultraviolet

Beberapa cara yang dapat diambil untuk menghindari pengaruh buruk dari sinar ultraviolet diantaranya adalah:
1.     Menghindari sengatan langsung sinar matahari terutama pada saat matahari mencapai titik kulminasi. Pada kondisi ini energi sinar ultraviolet B dipermukaan bumi mencapai puncaknya.
2.    Melindungi kulit secara fisik, seperti menggunakan topi lebar, payung, atau pakaian.
3.     Memakai tabir surya, sun block yang mengandung bahan yang menyerap, menghambur dan memantulkan energi sinar matahari.

G.Jenis-jenis Sinar Ultraviolet

·         Sinar UVA. Merupakan sekitar 95 persen dari semua energi ultraviolet. Sinar UVA tidak menyebabkan kulit terbakar, namun dampaknya bisa berlangsung lama.

·         Sinar UVB. Meninggalkan efek di atas lapisan kulit luar dan diduga sebagai penyebab utama kulit terbakar, penuaan dini dan kanker kulit. Paling banyak intensitasnya di tempat yang tinggi dan di daerah yang semakin dekat garis khatulistiwa. Sinar ini penyebab rusaknya sistim imunitas tubuh.

·         Sinar UVC. Merupakan sinar yang terkuat dan paling berbahaya. Tapi jangan khawatir, untuk seseorang terkena sinar UVC ini sangat sedikit kemungkinannya. Karena biasanya langsung tersaring lapisan ozon dan tidak mencapai permukaan bumi. Tapi, mengingat makin menipisnya lapisan ini, Anda tentunya harus ekstra hati-hati.
































Sinar Laser

Sinar Laser

\
A.Deskripsi
Dalam teknologi laser, cahaya yang koheren menunjukkan suatu sumber cahaya yang memancarkan panjang gelombang yang diidentifikasi dari frekuensi yang sama, beda fase yang konstan[1] dan polarisasinya. Selanjutnya untuk menghasilkan sebuah cahaya yang koheren dari medium lasing adalah dengan mengontrol kemurnian, ukuran, dan bentuknya. Keluaran yang berkelanjutan dari laser dengan amplituda-konstan (dikenal sebagai CW atau gelombang berkelanjutan), atau detak, adalah dengan menggunakan teknik Q-switching, modelocking, atau gain-switching.
Dalam operasi detak, dimana sejumlah daya puncak yang lebih tinggi dapat dicapai. Sebuah medium laser juga dapat berfungsi sebagai penguat optik ketika di-seed dengan cahaya dari sumber lainnya. Sinyal yang diperkuat dapat menjadi sangat mirip dengan sinyal input dalam istilah panjang gelombang, fase, dan polarisasi; Ini tentunya penting dalam telekomunikasi serat optik.
Sumber cahaya umum, seperti bola lampu incandescent, memancarkan foton hampir ke seluruh arah, biasanya melewati spektrum elektromagnetik dari panjang gelombang yang luas. Sifat koheren sulit ditemui pada sumber cahaya atau incoherens; dimana terjadi beda fase yang tidak tetap antara foton yang dipancarkan oleh sumber cahaya. Secara kontras, laser biasanya memancarkan foton dalam cahaya yang sempit, terpolarisasi, sinar koheren mendekati monokromatik, terdiri dari panjang gelombang tunggal atau satu warna.
Beberapa jenis laser, seperti laser dye dan laser vibronik benda-padat (vibronic solid-state lasers) dapat memproduksi cahaya lewat jangka lebar gelombang; properti ini membuat mereka cocok untuk penciptaan detak singkat sangat pendek dari cahaya, dalam jangka femtodetik (10-15 detik). Banyak teori mekanika kuantum dan termodinamika dapat digunakan kepada aksi laser, meskipun nyatanya banyak jenis laser ditemukan dengan cara trial and error.
B.Sejarah Sinar Laser
LASER (singkatan dari bahasa Inggris: Light Amplification by Stimulated Emission of Radiation).Laser memperkuat cahaya.Laser dapat mengambil berkas cahaya yang lemah dan membuatnya menjadi berkas yang kuat.Beberapa laser menghasilkan berkas yang sangat kuat sehingga dapat membakar lubang kecil di dalam selembar besi dalam waktu kurang dari satu detik.Sinar laser dapat mencapai jarak jauh melalui angkasa luar tanpa menyebar dan menjadi lemah. Karena itulah, sinar laser menjadi alat komunikasi penting dalam berkomunikasi dalam zaman angkasa luar. Banyak kegunaan laser sudah ditemukan dalam ilmu kedokteran, ilmu pengetahuan, dan industri.
Ilmuwan menganggap cahaya sebagai gelombang yang bergerak. Jarak dari kulit sebuah gelombang ke kulit berikutnya disebut panjang gelombang. Cahaya dari matahari atau dari lampu adalah campuran banyak panjang gelombang. Setiap panjang gelombang yang berbeda menghasilkan warna yang berbeda.
Sinar laser terbuat dari cahaya yang semuanya terdiri dari panjang gelombang yang sama. Berkas cahaya dalam cahaya biasa mengalir ke arah yang berbeda. Sinar laser bergerak dalam arah yang sama persis. Sinar laser tidak menyebar dan tidak melemah
Pada awal perkembangannya, orang tidak menyebut dengan nama laser. Para ahli masa itu menyebutnya sebagai MASER (Microwave Amplification by the Stimulated Emission of Radiation). Dan orang yang disebut-sebut pertama kali mengungkapkan keberadaan maser adalah Albert Einstein antara tahun 1916 - 1917. Ilmuwan yang terkenal eksentrik ini juga yang pertama kali berpendapat bahwa cahaya atau sinar bukan hanya terdiri dari gelombang elektromagnetik, tapi juga bermuatan partikel dan energi. Dan dikenal lah apa yang disebut sebagai radiasi. Tapi maser dari Einsten ini baru sebatas teori. Teknologi pada dekade kedua abad 20 belum mampu mewujudkannya. Disamping itu, banyak ilmuwan yang menganggap teori dari Eisntein itu sebagai teori yang kontroversial.
Pada tahun-tahun berikutnya, terlebih pada perang dunia kedua, maser lebih banyak digunakan untuk kepentingan militer, yaitu untuk pengembangan radar. Hingga akhirnya Charles H. Townes, James Gordon, dan Herbert Zeiger, berhasil membuat maser dengan menggunakan gas Amoniak. Dan inilah maser yang pertama kali dibuat orang. Keberhasilan itu dipublikasikan pada tahun 1954. Itu merupakan maser dengan satu tingkat energi. Selanjutnya ide emisi dua tingkat untuk mempertahankan inversi pada maser telah dikembangkan oleh dua orang ilmuwan Sovyet, Nikolai Basov dan Alexander Prokhorov. Karena sumbangannya yang sangat penting ini dalam pengembangan maser, Charles H. Townes, Nikolai Basov, dan Alexander Prokhorov berbagi hadiah Nobel bidang Fisika pada tahun 1964.
Charles H. Townes memang orang yang berperan penting dalam dunia maser. Sebelumnya beliau bersama Arthur Schawlow telah meneliti kemungkinan pembuatan maser optik (yang kemudian berkembang menjadi laser) dan sinar infra merah. Rincian penelitian itu diterbitkan pada bulan Desember 1958. Namun mereka berdua masih menemui kesulitan dan pembuatan laser (maser optik). Hingga akhirnya sebelum memasuki tahun 1960 Theodore Maiman bisa mewujudkan kerja sinar laser. Maiman menggunakan silinder batu Ruby untuk memicu timbulnya laser hingga laser buatannya dikenal sebagai Ruby Laser. Tapi Ruby Laser hanya mampu bekerja pada energi tingkat ketiga. Setelah memasuki tahun 1960, Peter Sorokin dan Mirek Stevenson mulai mengembangkan laser tingkat keempat yang pertama. Tapi itu pun masih sebatas teori dan tujuan untuk merealisasikannya masih belum tercapai. Namun sejak saat itu lah era laser dimulai.
Sekilas bahwa Theodore Maiman dianggap sebagai orang yang pertama kali berhasil membuat laser (bukan maser). Tapi sebenarnya ada orang lain yang telah mendahuluinya yaitu Gordon Gould. Pada tahun 1958, Gordon Gould kabarnya telah berhasil membuat maser optik (laser) bahkan dia juga yang dianggap sebagai orang yang pertama kali menggunakan istilah Laser (Light Amplification by the Stimulated Emission of Radiation). Tapi Gordon gagal mendaftarkan paten laser-nya pada tahun 1959. Hingga pada tahun 1977 Gordon memenangkan paten tersebut. Butuh waktu 8 tahun untuk mendapatkan pengakuan itu.
Pada masa yang hampir bersamaan juga beberapa ilmuwan lain berhasil membuat laser dengan menggunakan bahan yang berbeda. Misalnya Ali Javan, William Bennet dan Donald Herriot yang membuat laser dengan media gas helium dan neon pada tahun 1960 dan keberhasilannya baru dipublikasikan pada tahun 1961. Kumar N. Patel membuat laser dengan perantaraan karbondioksida, nitrogen, dan helium pada tahun 1964. Dan pada tahun yang sama juga (1964), Earl Bell membuat laser dengan bantuan helium dan merkuri. Para ilmuwan ini dianggap pembuat untuk laser gas karena bahan-bahan yang mereka gunakan untuk membuat laser pada umumnya berupa zat gas.
Perkembangan yang cukup penting terjadi pada tahun 1962 ketika seorang ilmuwan yang bekerja pada perusahaan General Electric, Robert Hall, menemukan laser semikonduktor berukuran mini dengan biaya murah. Biasanya mesin atau peralatan pemroduksi sinar laser berukuran besar. Laser buatan Rober Hall inilah yang hingga kini digunakan pada perangkat vcd dan dvd player, printer laser, pembaca kode bar, drive pada CPU, sistem komunikasi yang menggunakan serat optik, dan sebagainya.
Sebuah penemuan yang revolusioner dibuat pada tahun 1970 ketika Charles Kao dan George Hockham berhasil membuat apa yang sekarang disebut serat optik (fiberglass). Mereka berdua memang tidak membuat laser, tapi penemuannya sangat penting dalam penggunaan aplikasi laser. Dan seperti kita tahu, serat optik banyak digunakan dalam bidang komunikasi. Bidang inilah yang memang dianggap sebagai pengguna terbesar aplikasi laser. Laser dan serat optik memang dua penemuan yang sangat saling mendukung.

C.Manfaat Dari Sinar Laser

Dalam kehidupan sehari-hari, laser digunakan pada berbagai bidang. Dalam penggunaannya, energi laser yang terpancar tiap satuan waktu dinyatakan dengan orde dari beberapa mW(Laser yand digunakan dalam system audio laser disk) sampai dengan beberapa MW(Laser yang digunakan untuk senjata). Besarnya energi laser yang dipilih bergantung pada penggunaannya. Pemanfaatan sinar laser misalnya pada bidang kedokteran, pelayanan (jasa), industri, astronomi, fotografi, elektronika, dan komunikasi.
Uraian selengkapnya sebagai berikut
  1. Dalam bidang kedokteran dan kesehatan, sinar laser digunakan antara lain untuk mendiagnosis penyakit, pengobatan penyakit, dan perbaikan suatu cacat serta penbedahan
  2. Dalam bidang pelayanan, sinar laser dapay membantu kasir took menghitung total harga barang-barang yang dibeli konsumen. Caranya barang yang diberi label kode batang disinari sinar laser. Laser yang digunakan adalah laser He-Ne.
  3. Pada bidang industri, sinar laser bermanfaat untuk pengelasan, pemotongan lempeng baja, serta untuk pengeboran.
  4. Pada bidang astronomi, sinar laser berdaya tinggi dapat digunakan untuk mengukur jarak Bumi Bulan dengan teliti.
  5.  Dalam bidang fotografi, laser mampu menghasilkan bayangan tiga dimensi dari suatu benda, disebut holografi.
  6. Dalam bidang elektronika, laser solid state berukuran kecil digunakan dalam system penyimpanan memori optik dalam computer.
  7. Dalam bidang komunikasi, laser berfungsi untuk memperkuat cahaya sehingga dapat menyalurkan suara dan sinyal gambar melalui serat optik.
D.Kekurangan dan Kelebihan Sinar Laser

inilah beberapa kelebihan teknologi laser dalam dunia kedokteran:

·         Lebih Efektif
Laser dapat mengobati kelainan-kelainan yang tidak mungkin dilakukan oleh tindakan operasi, misalnya mengatasi hemangioma yang cukup lebar. Operasi dengan pisau bedah akan merusak jaringan yang cukup luas sehingga menyulitkan dokter untuk menjahitnya kembali. Dengan tindakan laser, hal itu dapat dihindari karena jaringan pembuluh darah yang dirusak hanyalah bagian-bagian yang tidak diinginkan atau tanpa menciutkan dan merusak jaringan serta pembuluh darah lain. “Jadi penanganannya lebih fokus karena hanya mengenai target yang diinginkan,” tandas Nora.
·         Lebih Cepat Normal
Meski tindakan laser memungkinkan terjadinya kerusakan pada jaringan lain, tetapi kerusakan pascalaser atau bekas lukanya bisa diminimalkan. Sementara tindakan pembedahan umumnya akan mengakibatkan kerusakan lebih luas yang akan memperlambat proses penyembuhan.

Meskipun ada kelebihannya, laser pun memiliki kekurangan:

·         Penyinaran dengan laser biasanya tidak bisa dilakukan hanya sekali melainkan berulang kali. Padahal biaya untuk sekali penyinaran relatif mahal. Penentuan jumlah tindakan ini sifatnya sangat individual tergantung pada jenis penyakit dan tingkat keparahannya. Hal ini baru diketahui setelah dilakukan observasi.

·         Efek samping penggunaan laser yang sering dilaporkan adalah munculnya rasa panas setelah dilakukan penyinaran. Hal ini disebabkan karena paparan sinar laser yang terserap ke jaringan tubuh akan diubah menjadi energi panas sehingga timbul perasaan panas. Namun, hal ini bisa diatasi dengan keakuratan penyinaran. Untuk itulah penyinaran laser harus dilakukan oleh ahli terlatih. Misalnya oleh dokter yang memang sudah mendalami penggunaan teknologi laser. “Penggunaan laser harus sesuai dengan jenis kelainan, kekuatan laser, dan lama pajanannya. Bila keliru maka efek samping bisa saja muncul,” tambah Nora.

·         Tindakan laser membutuhkan syarat tertentu. Misalnya, di ruang penyinaran sebaiknya tidak terdapat alkohol dan produk lain yang mengandung alkohol seperti hair spray, minyak wangi, antiseptik, atau lainnya. Untuk itu baik dokter, pasien, maupun orang tua pasien, sebaiknya bersih dari bahan-bahan tersebut. Bila sinar laser ini memantul, tak mustahil akan membakar benda atau bagian-bagian yang mengandung alkohol.


E. Sifat-sifat sinar Laser

·         Cahayanya monokromatik,  berkasnya sejajar atau searah,
·         koheren: apa-apanya sama, misal fasanya, intensitasnya sangat besar. 



F. Jenis-jenis sinar Laser

Ada berbagai jenis laser. Medium laser bisa padat, gas, cair atau semikonduktor. Laser biasanya ditentukan oleh jenis bahan yang digunakan oleh penguatnya
  • Solid-state laser material telah dikuatkan terdistribusi dalam matriks padat (seperti ruby atau neodymium: yttrium-aluminium garnet laser yag). Laser neodymium-yag memancarkan cahaya inframerah pada 1.064 nanometer (nm).
  • Laser Gas (helium dan helium-neon, hene, merupakan laser gas yang paling umum) memiliki output utama dari lampu inframerah. CO2 laser memancarkan energi jauh dr inframerah, dan digunakan untuk memotong material keras.
  • Laser Excimer (nama ini berasal dari istilah excited dan dimers) menggunakan gas reaktif, seperti klorin dan fluorin, dicampur dengan gas inert seperti argon, kripton atau xenon. Ketika elektrik dirangsang, molekul pseudo (dimer). Ketika lased, dimer menghasilkan cahaya dalam kisaran ultraviolet.
  • Dye laser menggunakan pewarna organik kompleks, seperti rhodamine 6g, dalam larutan cair atau suspensi sebagai media penguat.
  • Semiconductor laser, kadang-kadang disebut dioda laser, laser yg tidak solid-state. Perangkat elektronik yg menggunakan ini umumnya sangat kecil dan menggunakan daya yang rendah. Mereka dapat dibangun menjadi array yang lebih besar, seperti sumber penulisan dalam beberapa printer laser atau CD player.